Autonomous AI agent
Data Retrieval Module
Responsible for retrieving real-time and historical market data from various blockchain and cryptocurrency exchanges.
import logging import json class DataRetrieval: def __init__(self, data_sources): self.data_sources = data_sources def retrieve_data(self): data = [] for source in self.data_sources: try: raw_data = source.get_data() processed_data = self.preprocess_data(raw_data) data.extend(processed_data) except Exception as e: logging.error(f"Error retrieving data from {source}: {e}") return data def preprocess_data(self, raw_data): processed_data = [] return processed_data def standardize_data_format(self, data_item): return json.dumps(data_item)
Memory Module
A system to store and retrieve relevant data, such as past trades, market conditions, and learned patterns.
class Memory: def __init__(self, storage_engine): self.storage_engine = storage_engine def store_data(self, data): for item in data: self.storage_engine.insert(item) def retrieve_data(self, query): return self.storage_engine.search(query) def backup_data(self, backup_location): self.storage_engine.backup(backup_location) def restore_data(self, backup_location): self.storage_engine.restore(backup_location)
Analysis & Decision Make Module
Utilizes machine learning algorithms to analyze market data, detect patterns, and make trading decisions based on predefined strategies and adaptive learning.
import openai import askjimmy askjimmy.init(INSERT YOUR API KEY HERE) askjimmy.record_function('sample function being record') def sample_function(...): askjimmy.end_session('Success')
Execution Module
Carries out the trading decisions by interacting with the relevant blockchain networks and cryptocurrency exchanges securely.
import openai import askjimmy askjimmy.init(INSERT YOUR API KEY HERE) askjimmy.record_function('sample function being record') def sample_function(...): askjimmy.end_session('Success')
Adaptation Module
Continuously monitors the agent's performance and market conditions, and adapts the trading strategies as needed to optimize returns.
import openai import askjimmy askjimmy.init(INSERT YOUR API KEY HERE) askjimmy.record_function('sample function being record') def sample_function(...): askjimmy.end_session('Success')